Cytoplasmic 5′-3′ exonuclease Xrn1p is also a genome-wide transcription factor in yeast

نویسندگان

  • Daniel A. Medina
  • Antonio Jordán-Pla
  • Gonzalo Millán-Zambrano
  • Sebastián Chávez
  • Mordechai Choder
  • José E. Pérez-Ortín
چکیده

The 5' to 3' exoribonuclease Xrn1 is a large protein involved in cytoplasmatic mRNA degradation as a critical component of the major decaysome. Its deletion in the yeast Saccharomyces cerevisiae is not lethal, but it has multiple physiological effects. In a previous study, our group showed that deletion of all tested components of the yeast major decaysome, including XRN1, results in a decrease in the synthetic rate and an increase in half-life of most mRNAs in a compensatory manner. Furthermore, the same study showed that the all tested decaysome components are also nuclear proteins that bind to the 5' region of a number of genes. In the present work, we show that disruption of Xrn1 activity preferentially affects both the synthesis and decay of a distinct subpopulation of mRNAs. The most affected mRNAs are the transcripts of the highly transcribed genes, mainly those encoding ribosome biogenesis and translation factors. Previously, we proposed that synthegradases play a key role in regulating both mRNA synthesis and degradation. Evidently, Xrn1 functions as a synthegradase, whose selectivity might help coordinating the expression of the protein synthetic machinery. We propose to name the most affected genes "Xrn1 synthegradon."

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts

In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. One model is that the RNA of ye...

متن کامل

Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis.

Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals. Deletion of the XRN1 gene causes pleiotropic phenotypes, which have been interpreted as indirect consequences of the RNA turnover defect. By sequence comparisons, we have identified three loosely defined, common 5'-3' exonuclease motifs. The significance of...

متن کامل

Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae.

Exoribonuclease I from yeast is a 175 kDa protein that is responsible for the majority of cytoplasmic mRNA degradation. Alignment of the Xrn1p sequence with homologs from yeast as well as from higher eukaryotes suggests that the protein is composed of several domains: two acidic N-terminal domains which likely contain the exonuclease, a basic middle domainand a basic C-terminal domain. Deletion...

متن کامل

Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes.

Hal2p is an enzyme that converts pAp (adenosine 3',5' bisphosphate), a product of sulfate assimilation, into 5' AMP and Pi. Overexpression of Hal2p confers lithium resistance in yeast, and its activity is inhibited by submillimolar amounts of Li+ in vitro. Here we report that pAp accumulation in HAL2 mutants inhibits the 5'-->3' exoribonucleases Xrn1p and Rat1p. Li+ treatment of a wild-type yea...

متن کامل

The roles of endonucleolytic cleavage and exonucleolytic digestion in the 5'-end processing of S. cerevisiae box C/D snoRNAs.

Small nucleolar RNAs (snoRNAs) play important roles in ribosomal RNA metabolism. In Saccharomyces cerevisiae, box C/D snoRNAs are synthesized from excised introns, polycistronic precursors, or independent transcription units. Previous studies have shown that only a few independently transcribed box C/D snoRNAs are processed at their 5' end. Here we describe 12 additional independently transcrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014